MacOS disk repairs

If anybody ever says that Apple is a lot better than Microsoft one thing that they need to pay attention to is the fact that both companies are guilty of the same problems. In this case I’m talking about both companies habit of letting long standing regressions in their software languish, unaddressed for long periods of time. Apple’s sin in this case is with Disk Utility. Apples has allowed a bug in the Disk Utility in macOS go on, unaddresses since about OS X 10.13 or so when they changed the structure of Time Machine Backups to force an encrypted drive. I’ll admit that I’m not being completely fair. I’m running an older version of macOS on my laptop so this bug may indeed be fixed but it still stayed in the software for a good 3 years.

By trying to make it easier to use an encrypted volume for backups Apple has added a few steps to the process of checking these volumes for structural errors. This means the graphic Disk Utility frequently false positives, saying that your volume has a problem. The real issue is that Disk Utility hasn’t properly set things up for the volume check to happen. Back in the olden days, UNIX you wouldn’t let you use a Volume with structural problems because you couldn’t mount it with write allowed. Today is you can mount broken drives in write mode. Then you get to cross your fingers that you’re not compounding an existing problem. Side note: Here’s where I admit to being really really old because 99% of the time its actually okay and that’s actually the case. The result is that Disk Utility can’t properly check out your Time Machine Volumes. To check one out you need to take the time to boot your machine into recovery mode where all of this shiny that makes users happy is disabled. In recovery mode, Disk Utility just works. Compounding this problem, when Apple does the check from a normal boot, it doesn’t detect its own bug and declares that your volume is dangerously corrupted and unreliable so your best best is to start from scratch. This article shows how you can at least get some peace of mind by checking the state of the volume and repairing it from the command line in a terminal window. I would’ve liked to have seen a screenshot of the command line session. But the author decided that figuring out which disk you need to check is too difficult and they didn’t include one. That’s the responsible choice since you are going to be doing a lot of potentially destructive commands with sudo. I worked my way through the process on my own third Time Machine Volume. I have this issue because this Volume is connected to my docking station. It auto mounts when I use my machine on my desktop so I can have a full sized monitor. It’s easy to forget that the Volume needs to be ejected cleanly and quiesced before I disconnect from the docking station. I’m cultivating the habit of ejecting this Volume when my backup has completed.

Git mirroring

Not many people chose to run their own gitlabs instance these days. My preference for self reliance means that I do. If you value self reliance I have recommendations:

  • Use ansible, chef, or puppet to build your gitlab instance because you are going to build two.
  • Build one gitlabs server for your groups consumption. Put this one in a data center close to your user for good performance.
  • Build a second gitlabs server in a remote location, perhaps at your favorite cloud provider. Where ever the second gitlabs instance is, you’ll want either one way or bidirection access via https or ssh between the two servers.
  • Follow the directions in your gitlabs: Help -> User Documentation -> Mirror a Repository. To mirror the repository from the primary to the secondary.

At this point, you’ve created a great plan B for disaster recovery in case something terrible happens to your gitlabs. For me, gitlabs is storing the Terraform and Ansible that I use to build my infrastructure. The goal is to be able to jumpstart your whatever from the mirror. I called the mirror my plan be because my plan A is to directly restore gitlabs from a nightly backup.

Setting up the mirror

Setting up the mirror is well documented. In broad strokes, here are the steps:

  • On the mirror, create a group and project to hold the mirrored repository.
  • Choose Push or Pull mirroring. In Push, the primary will push updates to the secondary as you work. In Pull, the mirror will periodically poll the primary for changes. You’ll have to decide what works best for you.
  • Fill out the form and perform any needed setup. When using push over ssh, this means setting up the primary to push and then copying the ssh public key from the primary and adding it as an allowed key on the mirror user.

As you configure mirroring, remember that constructing the mirror URL can be tricky especially if you want to use ssh as transport. This is because a typical git cloning string looks like this: but the mirroring URL for this is: ssh:// The difference lies between the server,, and path. When cloning, the separator is a colon, ‘:’. When mirroring, it’s a slash, ‘/’. Getting the authentication can also be tricky. Mirroring more than a few repositories using SSH can become tricky because gitlabs generates a new ssh key for each repository. This is one place of the few places where I like git+https more than git+ssh. Finally, git+https is not without its pitfalls. If like me you also have your own CA then you have the additional problem that git doesn’t do a good job configuring curl’s CA. You have two choices here. On the box initiating the transfer, run: git config --global http.sslCAPath my-ca-path to use your CA dir or git config --global http.sslCAInfo my-ca-file.pem to configure your CA file. One advantage of git+https in this configuration is that you can create a single user token for all of your mirroring. My concern with git+ssh here is the proliferation of keys may eventually cause git to fail with a “too many authentication attempts” error. With git+http, you can create one mirroring token for all mirror operations.

Once you’ve setup mirroring, you have a great plan B if the day ever comes that your gitlabs server becomes unavailable. You should have a working gitlabs mirror that you can use in any way that you please. You can even pull backups of the mirror server so you have a redundant, offsite-backup.